
[1] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in
Facebook. In Proceedings WOSNÕ09, August 2009.

[2] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia. DECENT: A decentralized
architecture for enforcing privacy in online social networks. In Proceedings SESOC, 2012.

[3] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia. Cachet: A decentralized architecture
for privacy preserving social networking with caching. To appear in CoNEXT, 2012.��

v!The lack of user privacy:
Ø!Users are not in control of their private data,
Ø!OSN operators gather an extensive amount of information about users,
Ø!As single points of failure, any vulnerability in these systems (or even

accidental leaks) can be exploited by a malicious adversary to obtain
user data,

Ø!Not fine-grained access controls can be defined on usersÕ data.

v!A simulator for Cachet based on the FreePastry simulator
v!To simulate the social graph, we used the Facebook friendship graph[1]:

Ø!63,732 nodes,
Ø!1.54 million edges.

v!Considering different percentages of users amongst P Õs social contacts
that remain online Ñ 10%, 30% and 50%.

v! Performance metrics:
Ø!Hit Rate: the percentage of objects that has been provided by social

contacts.
Ø!Progressive Hit Rate: the percentage of objects that have been

obtained after d DHT lookups and pulling social contactsÕ cached
objects.

* PhD student of Security Informatics, shirinili@indiana.edu
+ # Assistant Professor of school of Informatics and Computing, kapadia@indiana.edu��

v!Attribute-based policies: e.g., friends AND family OR colleagues.

v!Cryptographic Protection :

Ø!Hybrid encryption scheme:
ü!traditional public key and attribute-based encryption (ABE).

Ø! Attribute-based encryption
ü! Each of the social contacts is issued a different secret attribute-key defining what

attributes that person contains.
ü! An object is encrypted with an attribute-based policy.
ü! A person can decrypt an object if and only if her secret key satisfies the policy

used to encrypt it.
Alice's Wall

ID1, ABE(K 1, P1), W PK 1

.

.

.

.

.

.

Alice's status

WPK 1

Version #

Enc(K Alice , W SK 1)

APK 1

ABE(ASK 1, AP1)

"DECENT Rocks"
(content)

SignW SK 1

ID 2, ABE(K 2, P2), W PK 2

Bob's comment

Version #

"like"
(content)

W P K 2

APK 2

ABE(ASK 2, AP2)

SignW SK 2

ID 1

Hash

= Encrypted with K 1

SignASK 1

Hash
ID 2

Hash

Enc(K Bob , W SK 2)

= Encrypted with K 2

Cachet: A Decentralized Architecture for Privacy
Preserving Social Networking with Caching

Shirin Nilizadeh *, Sonia Jahid+, Prateek Mittal+, Nikita Borisov+, Apu Kapadia*
*Indiana University Bloomington, +University of Illinois at Urbana-Champaign

Alice(
Bob(

v!Goal: progressively retrieve cached, unencrypted versions of objects to
greatly speed up the process of loading the newsfeed or wall.

v!The basic idea: use of social links between users who act as caches to

store unencrypted objects recently seen in the social network.

v!Presence Protocol

Ø! Uses social caching for finding online contacts.
Ø! Online social contacts provide cached, decrypted objects to other contacts who

also satisfy the policy for presence objects related to offline contacts.
Ø! Minimize the number of decryptions by dynamically learning which peers yield the

most cached objects.

v!Gossip-based Social Caching
1)! Creating the presence table
2)! Selecting a contact
3)! DHT lookup
4)! Pulling information
5)! Caching information
6)! Updating presence table
7)! Performing DHT lookups for

 offline social contacts with
no mutual social contacts

v!Searching social contacts
v! Privacy issues:

1)! Users not be aware that they are being excluded from accessing the object.
2)! Avoid leakage of information about the identities of users who satisfy a particular

policy to all of those identities.
3)! Avoid revealing information about when a user comes online or offline.

v!Providing the same functionalities as OSNs in P2P networks is
challenging and raises entirely new privacy concerns:
Ø! Not everyone in P2P networks is trustworthy,
Ø! Network traffic is sometimes interpreted as hostile.

v!On the other hand, one approach to mediate security and privacy
concerns in P2P networks is to leverage trusted social links between
users.

v!P2P paradigm and social networks mutually can improve one anotherÕs

efficiency, security, and privacy.
Ø!Using P2P architecture for social networks increases privacy and

anonymity and
Ø! Using social networks concepts to construct P2P networks creates

more trust between users.

v!Online social networks have emerged as significant social and technical
phenomena over the last several years.

Ø! Facebook has grown beyond 900 million
monthly active users,

Ø! Google+ reached the mark of 10 million
users in only 2 weeks after going public.

v!Considering a hybrid structured-
unstructured overlay:

Ø!The distributed hash table (DHT)
 is used as a base storage layer

Ø!A gossip-based social caching

algorithm dramatically increases
performance.

Online Social Networks (OSNs) Implementation and simulation

Distributed P2P Networks

Security Requirements
v!Confidentiality and integrity of user data,
v!Users have complete control over the permissions to content they create
v!No user accesses content unless explicitly authorized by the owner
v!User relationships should remain hidden from third parties, such as the

storage nodes.

Base Architecture

v!Downloading the newsfeed needs:

1)! Decrypting update objects, which
are ABEncrypted, to yield metadata
such as an updateÕs DHT key and
symmetric decryption key;

2)! Accessing multiple small objects

located in different storage nodes;

3)! decrypting the retrieved update
objects with their corresponding
symmetric keys.

Social Caching

comments, links, and pictures are small enough;
large objects such as videos can be retrieved from
the DHT or online services (e.g., YouTube) on de-
mand only;

6. Updating Presence Table: P updates the pres-
ence table with the online status of social contacts
based on information learned from Q. Then it re-
turns to Step 2 to locate the next social contact to
connect to;

7. Performing DHT Lookups for O✏ine social con-
tacts with No Mutual Social Contacts: If the re-
cent updates of some social contacts are missing,
then this shows that they do not have any online
mutual social contacts with P , and P must obtain
these objects from the DHT. Thus, to retrieve the
newsfeed, P needs to 1) derive the key for their
updates by ABDecryption of their reference em-
bedded in the parent/containing object; 2) per-
form DHT lookups for them; and 3) decrypt the
updates by their corresponding symmetric key.

By exchanging presence status and recent updates
between online social contacts, the presence table and
the cache are always up-to-date. Thus, for viewing the
newsfeed, peer P just retrieves recent updates from the
cache.

4.3 Identifying Mutual Contacts and Autho-
rized Users

Many of the benefits of social caching come from be-
ing able to identify mutual social contacts. Although re-
lationships between users are privacy sensitive, in prac-
tice many users are comfortable sharing this informa-
tion with at least their immediate social circle. For
further privacy protection it is possible to use a social
contact discovery protocol that reveals only mutual so-
cial contact relationships and nothing else [18].

Since cached content is stored unencrypted, it is also
important to verify that a contact satisfies the access
policy associated with the object. It should be possi-
ble to extend the private contact discovery protocol to
learn the attributes shared by P and Q and thus make
an authorization decision based on that.3 For simplic-
ity, however, in our current implementation we instead
include an explicit list of authorized users in each con-
tainer that can be used to mediate sharing.

We note that users who wish to conceal their social
relationships, or reveal only a selected subset, may do
so, trading o! privacy for the e"ciency of social caching.

3Briefly, instead of a contact certificate as in [18] one would
use a (contact,attribute) certificate for each attribute.

Algorithm 1: User P joins the network
1
2 // User P j o i n s the network
3 genera tePresenceTab le (t a b l e) ;
4 soc ia lCach ingA lg (tab le , cache) ;
5 f o r (s o c i a l con tac t Q : t a b l e . keySet ()) {
6 i f (! cache . c on t a i ns (Q. update)) {
7 getDHTKeyFor (Q. update) ;
8 encUpdate = dhtLookUp (Q, Q. updateObj) ;
9 update = dycrypt (encUpdate) ;

10 cache . put (Q, update) ;
11 }
12 }

Algorithm 2: Social caching algorithm
1
2 vo id soc ia lCach ingA lg (p resenceTab le tab le ,
3 Cache cache){
4 f o r (Soc ia lCon tac t Q : t a b l e . keySet ()) {
5 Q. v i s i t e d = TRUE;
6 dhtLookUp (Q, Q. presenceObj) ;
7 i f (Q. p resence . s t a t u s) {
8 sendTo (Q, Q. presenceObj) ;
9 receiveMessageFrom (Q, bu f r) ;

10 i f (bu f r . co n ta i n s (presenceObj))
11 updateTable (tab le , bu f r) ;
12 i f (bu f r . co n ta i n s (UpdateObj))
13 selectUpdatesToKeep (cache , bu f r) ;
14 }
15 Soc ia lCon tac t R = s e l e c t S o c i a l C o n t a c t (& t a b l e) ;
16 soc ia lCach ingA lg (R, t a b l e) ;
17 }

5. EVALUATION
In this section, we evaluate the performance of our

presence and social-caching algorithms.

5.1 Implementation and simulation setup
We built a simulator for Cachet based on the FreeP-

astry simulator [40], which implements the underlying
DHT. We simulate the cryptographic operations for
EASiER [27] with 1 attribute policy and 100 revoca-
tions run on a standard machine with 2.40GHz Intel
Core 2 Duo, 4GB memory, and running Ubuntu 10.04.
With this setting, the ABDecryption takes 422ms. The
symmetric key decryption (openssl aes-128-enc) takes
0.04ms on a file of size 2500 bytes, the average size of
a status update object. To simulate the social graph
in Cachet, we used the Facebook friendship graph from
the New Orleans regional network [43]. This data set
consists of 63,732 nodes, and 1.54 million edges.

We evaluated the performance of Cachet by averag-
ing results over the following unit experiment: we used
FreePastry to setup a DHT amongst all nodes in the
social network, except a particular random user P . We
then generate updates for the entire social circle of node
P , and simulate Cachet’s algorithms. Next we intro-
duce churn in the network, and consider di!erent per-
centages of nodes amongst P ’s social contacts and FoFs
that remain online — 10%, 30% and 50%. We then

6

comments, links, and pictures are small enough;
large objects such as videos can be retrieved from
the DHT or online services (e.g., YouTube) on de-
mand only;

6. Updating Presence Table: P updates the pres-
ence table with the online status of social contacts
based on information learned from Q. Then it re-
turns to Step 2 to locate the next social contact to
connect to;

7. Performing DHT Lookups for O✏ine social con-
tacts with No Mutual Social Contacts: If the re-
cent updates of some social contacts are missing,
then this shows that they do not have any online
mutual social contacts with P , and P must obtain
these objects from the DHT. Thus, to retrieve the
newsfeed, P needs to 1) derive the key for their
updates by ABDecryption of their reference em-
bedded in the parent/containing object; 2) per-
form DHT lookups for them; and 3) decrypt the
updates by their corresponding symmetric key.

By exchanging presence status and recent updates
between online social contacts, the presence table and
the cache are always up-to-date. Thus, for viewing the
newsfeed, peer P just retrieves recent updates from the
cache.

4.3 Identifying Mutual Contacts and Autho-
rized Users

Many of the benefits of social caching come from be-
ing able to identify mutual social contacts. Although re-
lationships between users are privacy sensitive, in prac-
tice many users are comfortable sharing this informa-
tion with at least their immediate social circle. For
further privacy protection it is possible to use a social
contact discovery protocol that reveals only mutual so-
cial contact relationships and nothing else [18].

Since cached content is stored unencrypted, it is also
important to verify that a contact satisfies the access
policy associated with the object. It should be possi-
ble to extend the private contact discovery protocol to
learn the attributes shared by P and Q and thus make
an authorization decision based on that.3 For simplic-
ity, however, in our current implementation we instead
include an explicit list of authorized users in each con-
tainer that can be used to mediate sharing.

We note that users who wish to conceal their social
relationships, or reveal only a selected subset, may do
so, trading o↵ privacy for the e�ciency of social caching.

3Briefly, instead of a contact certificate as in [18] one would
use a (contact,attribute) certificate for each attribute.

Algorithm 1: User P joins the network
1
2 //User P j o i n s the network
3 generatePresenceTable (t ab l e) ;
4 soc ia lCach ingAlg (tab le , cache) ;
5 f o r (s o c i a l contact Q : t ab l e . keySet ()){
6 i f (! cache . conta in s (Q. update)){
7 getDHTKeyFor (Q. update) ;
8 encUpdate = dhtLookUp (Q, Q. updateObj) ;
9 update = dycrypt (encUpdate) ;

10 cache . put (Q, update) ;
11 }
12 }

Algorithm 2: Social caching algorithm
1
2 void soc ia lCach ingAlg (presenceTable tab le ,
3 Cache cache){
4 f o r (Soc ia lContact Q : t ab l e . keySet ()){
5 Q. v i s i t e d = TRUE;
6 dhtLookUp (Q, Q. presenceObj) ;
7 i f (Q. presence . s t a tu s){
8 sendTo (Q, Q. presenceObj) ;
9 receiveMessageFrom (Q, bufr) ;

10 i f (bufr . conta in s (presenceObj))
11 updateTable (tab le , bufr) ;
12 i f (bufr . conta in s (UpdateObj))
13 selectUpdatesToKeep (cache , bufr) ;
14 }
15 Soc ia lContact R = s e l e c t S o c i a lCon t a c t (& tab l e) ;
16 soc ia lCach ingAlg (R, t ab l e) ;
17 }

5. EVALUATION
In this section, we evaluate the performance of our

presence and social-caching algorithms.

5.1 Implementation and simulation setup
We built a simulator for Cachet based on the FreeP-

astry simulator [40], which implements the underlying
DHT. We simulate the cryptographic operations for
EASiER [27] with 1 attribute policy and 100 revoca-
tions run on a standard machine with 2.40GHz Intel
Core 2 Duo, 4GB memory, and running Ubuntu 10.04.
With this setting, the ABDecryption takes 422ms. The
symmetric key decryption (openssl aes-128-enc) takes
0.04ms on a file of size 2500 bytes, the average size of
a status update object. To simulate the social graph
in Cachet, we used the Facebook friendship graph from
the New Orleans regional network [43]. This data set
consists of 63,732 nodes, and 1.54 million edges.

We evaluated the performance of Cachet by averag-
ing results over the following unit experiment: we used
FreePastry to setup a DHT amongst all nodes in the
social network, except a particular random user P . We
then generate updates for the entire social circle of node
P , and simulate Cachet’s algorithms. Next we intro-
duce churn in the network, and consider di↵erent per-
centages of nodes amongst P ’s social contacts and FoFs
that remain online — 10%, 30% and 50%. We then

6

Ø! Cached content is stored unencrypted
Ø! An explicit list of authorized users is

included in each container that can be
used to mediate sharing.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

Hi
t R

at
e

(%
)

Number of updates (friends)

50 percent
30 percent
10 percent

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Pr
es

en
ce

 h
it

ra
te

Number of DHT look ups

50% online contacts
30% online contacts
10% online contacts

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Ti
m

e
(s

ec
)

Number of friends(updates)

0% online contacts
10% online contacts
30% online contacts
50% online contacts

Results
v!Social caching provides most of the

update objects for viewing the newsfeed

Ø! It depicts the average Newsfeed Hit Rate as a

function of number of updates and the fraction of
online social contacts.

v! Social caching decreases the latency for
retrieving the newsfeed

Ø! The simulation time includes the time for:
1)! ABDecrypting the references to both presence and

update objects that are not provided by social
contacts,

2)! Performing DHT lookups for retrieving objects,
3)! Decrypting the objects.

v! Most of the presence objects would be
available after a few DHT lookups and
decryptions

Ø! It plots the Average Progressive Hit Rate after d DHT

lookups and ABDecryptions for users with100 ! m ! 200
where m is oneÕs number of social contacts.

Future Work

References

Acknowledgments
I would like to thank to my supervisor Professor Apu Kapadia for the valuable

guidance and advice. I give special thanks to all the co-authors of the Cachet
paper [2, 3]: Professor Nikita Borisov, Prateek Mittal, Sonia Jahid.

