
[1] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in
Facebook. In Proceedings WOSNÕ09, August 2009.

[2] S. Jahid, S. Nilizadeh, P. Mittal, N. Borisov, and A. Kapadia. DECENT: A decentralized
architecture for enforcing privacy in online social networks. In Proceedings SESOC, 2012.

[3] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia. Cachet: A decentralized architecture
for privacy preserving social networking with caching. To appear in CoNEXT, 2012.��

v!The lack of user privacy:
Ø!Users are not in control of their private data,
Ø!OSN operators gather an extensive amount of information about users,
Ø!As single points of failure, any vulnerability in these systems (or even

accidental leaks) can be exploited by a malicious adversary to obtain
user data,

Ø!Not fine-grained access controls can be defined on usersÕ data.

v!A simulator for Cachet based on the FreePastry simulator
v!To simulate the social graph, we used the Facebook friendship graph[1]:

Ø!63,732 nodes,
Ø!1.54 million edges.

v!Considering different percentages of users amongst P Õs social contacts
that remain online Ñ 10%, 30% and 50%.

v! Performance metrics:
Ø!Hit Rate: the percentage of objects that has been provided by social

contacts.
Ø!Progressive Hit Rate: the percentage of objects that have been

obtained after d DHT lookups and pulling social contactsÕ cached
objects.

* PhD student of Security Informatics, shirinili@indiana.edu
+ # Assistant Professor of school of Informatics and Computing, kapadia@indiana.edu��

v!Attribute-based policies: e.g., friends AND family OR colleagues.

v!Cryptographic Protection :

Ø!Hybrid encryption scheme:
ü!traditional public key and attribute-based encryption (ABE).

Ø! Attribute-based encryption
ü! Each of the social contacts is issued a different secret attribute-key defining what

attributes that person contains.
ü! An object is encrypted with an attribute-based policy.
ü! A person can decrypt an object if and only if her secret key satisfies the policy

used to encrypt it.
Alice's Wall

ID1, ABE(K 1, P1), W PK 1

.

.

.

.

.

.

Alice's status

WPK 1

Version #

Enc(K Alice , W SK 1)

APK 1

ABE(ASK 1, AP1)

"DECENT Rocks"
(content)

SignW SK 1

ID 2, ABE(K 2, P2), W PK 2

Bob's comment

Version #

"like"
(content)

W P K 2

APK 2

ABE(ASK 2, AP2)

SignW SK 2

ID 1

Hash

= Encrypted with K 1

SignASK 1

Hash
ID 2

Hash

Enc(K Bob , W SK 2)

= Encrypted with K 2

Cachet: A Decentralized Architecture for Privacy
Preserving Social Networking with Caching

Shirin Nilizadeh *, Sonia Jahid+, Prateek Mittal+, Nikita Borisov+, Apu Kapadia*
*Indiana University Bloomington, +University of Illinois at Urbana-Champaign

Alice(
Bob(

v!Goal: progressively retrieve cached, unencrypted versions of objects to
greatly speed up the process of loading the newsfeed or wall.

v!The basic idea: use of social links between users who act as caches to

store unencrypted objects recently seen in the social network.

v!Presence Protocol

Ø! Uses social caching for finding online contacts.
Ø! Online social contacts provide cached, decrypted objects to other contacts who

also satisfy the policy for presence objects related to offline contacts.
Ø! Minimize the number of decryptions by dynamically learning which peers yield the

most cached objects.

v!Gossip-based Social Caching
1)! Creating the presence table
2)! Selecting a contact
3)! DHT lookup
4)! Pulling information
5)! Caching information
6)! Updating presence table
7)! Performing DHT lookups for

 offline social contacts with
no mutual social contacts

v!Searching social contacts
v! Privacy issues:

1)! Users not be aware that they are being excluded from accessing the object.
2)! Avoid leakage of information about the identities of users who satisfy a particular

policy to all of those identities.
3)! Avoid revealing information about when a user comes online or offline.

v!Providing the same functionalities as OSNs in P2P networks is
challenging and raises entirely new privacy concerns:
Ø! Not everyone in P2P networks is trustworthy,
Ø! Network traffic is sometimes interpreted as hostile.

v!On the other hand, one approach to mediate security and privacy
concerns in P2P networks is to leverage trusted social links between
users.

v!P2P paradigm and social networks mutually can improve one anotherÕs

efficiency, security, and privacy.
Ø!Using P2P architecture for social networks increases privacy and

anonymity and
Ø! Using social networks concepts to construct P2P networks creates

more trust between users.

v!Online social networks have emerged as significant social and technical
phenomena over the last several years.

Ø! Facebook has grown beyond 900 million
monthly active users,

Ø! Google+ reached the mark of 10 million
users in only 2 weeks after going public.

v!Considering a hybrid structured-
unstructured overlay:

Ø!The distributed hash table (DHT)
 is used as a base storage layer

Ø!A gossip-based social caching

algorithm dramatically increases
performance.

Online Social Networks (OSNs) Implementation and simulation

Distributed P2P Networks

Security Requirements
v!Confidentiality and integrity of user data,
v!Users have complete control over the permissions to content they create
v!No user accesses content unless explicitly authorized by the owner
v!User relationships should remain hidden from third parties, such as the

storage nodes.

Base Architecture

v!Downloading the newsfeed needs:

1)! Decrypting update objects, which
are ABEncrypted, to yield metadata
such as an updateÕs DHT key and
symmetric decryption key;

2)! Accessing multiple small objects

located in different storage nodes;

3)! decrypting the retrieved update
objects with their corresponding
symmetric keys.

Social Caching

comments, links, and pictures are small enough;
large objects such as videos can be retrieved from
the DHT or online services (e.g., YouTube) on de-
mand only;

6. Updating Presence Table: P updates the pres-
ence table with the online status of social contacts
based on information learned from Q. Then it re-
turns to Step 2 to locate the next social contact to
connect to;

7. Performing DHT Lookups for O✏ine social con-
tacts with No Mutual Social Contacts: If the re-
cent updates of some social contacts are missing,
then this shows that they do not have any online
mutual social contacts with P , and P must obtain
these objects from the DHT. Thus, to retrieve the
newsfeed, P needs to 1) derive the key for their
updates by ABDecryption of their reference em-
bedded in the parent/containing object; 2) per-
form DHT lookups for them; and 3) decrypt the
updates by their corresponding symmetric key.

By exchanging presence status and recent updates
between online social contacts, the presence table and
the cache are always up-to-date. Thus, for viewing the
newsfeed, peer P just retrieves recent updates from the
cache.

4.3 Identifying Mutual Contacts and Autho-
rized Users

Many of the benefits of social caching come from be-
ing able to identify mutual social contacts. Although re-
lationships between users are privacy sensitive, in prac-
tice many users are comfortable sharing this informa-
tion with at least their immediate social circle. For
further privacy protection it is possible to use a social
contact discovery protocol that reveals only mutual so-
cial contact relationships and nothing else [18].

Since cached content is stored unencrypted, it is also
important to verify that a contact satisfies the access
policy associated with the object. It should be possi-
ble to extend the private contact discovery protocol to
learn the attributes shared by P and Q and thus make
an authorization decision based on that.3 For simplic-
ity, however, in our current implementation we instead
include an explicit list of authorized users in each con-
tainer that can be used to mediate sharing.

We note that users who wish to conceal their social
relationships, or reveal only a selected subset, may do
so, trading o! privacy for the e"ciency of social caching.

3Briefly, instead of a contact certificate as in [18] one would
use a (contact,attribute) certificate for each attribute.

Algorithm 1: User P joins the network
1
2 // User P j o i n s the network
3 genera tePresenceTab le (t a b l e) ;
4 soc ia lCach ingA lg (tab le , cache) ;
5 f o r (s o c i a l con tac t Q : t a b l e . keySet ()) {
6 i f (! cache . c on t a i ns (Q. update)) {
7 getDHTKeyFor (Q. update) ;
8 encUpdate = dhtLookUp (Q, Q. updateObj) ;
9 update = dycrypt (encUpdate) ;

10 cache . put (Q, update) ;
11 }
12 }

Algorithm 2: Social caching algorithm
1
2 vo id soc ia lCach ingA lg (p resenceTab le tab le ,
3 Cache cache){
4 f o r (Soc ia lCon tac t Q : t a b l e . keySet ()) {
5 Q. v i s i t e d = TRUE;
6 dhtLookUp (Q, Q. presenceObj) ;
7 i f (Q. p resence . s t a t u s) {
8 sendTo (Q, Q. presenceObj) ;
9 receiveMessageFrom (Q, bu f r) ;

10 i f (bu f r . co n ta i n s (presenceObj))
11 updateTable (tab le , bu f r) ;
12 i f (bu f r . co n ta i n s (UpdateObj))
13 selectUpdatesToKeep (cache , bu f r) ;
14 }
15 Soc ia lCon tac t R = s e l e c t S o c i a l C o n t a c t (& t a b l e) ;
16 soc ia lCach ingA lg (R, t a b l e) ;
17 }

5. EVALUATION
In this section, we evaluate the performance of our

presence and social-caching algorithms.

5.1 Implementation and simulation setup
We built a simulator for Cachet based on the FreeP-

astry simulator [40], which implements the underlying
DHT. We simulate the cryptographic operations for
EASiER [27] with 1 attribute policy and 100 revoca-
tions run on a standard machine with 2.40GHz Intel
Core 2 Duo, 4GB memory, and running Ubuntu 10.04.
With this setting, the ABDecryption takes 422ms. The
symmetric key decryption (openssl aes-128-enc) takes
0.04ms on a file of size 2500 bytes, the average size of
a status update object. To simulate the social graph
in Cachet, we used the Facebook friendship graph from
the New Orleans regional network [43]. This data set
consists of 63,732 nodes, and 1.54 million edges.

We evaluated the performance of Cachet by averag-
ing results over the following unit experiment: we used
FreePastry to setup a DHT amongst all nodes in the
social network, except a particular random user P . We
then generate updates for the entire social circle of node
P , and simulate Cachet’s algorithms. Next we intro-
duce churn in the network, and consider di!erent per-
centages of nodes amongst P ’s social contacts and FoFs
that remain online — 10%, 30% and 50%. We then

6

comments, links, and pictures are small enough;
large objects such as videos can be retrieved from
the DHT or online services (e.g., YouTube) on de-
mand only;

6. Updating Presence Table: P updates the pres-
ence table with the online status of social contacts
based on information learned from Q. Then it re-
turns to Step 2 to locate the next social contact to
connect to;

7. Performing DHT Lookups for O✏ine social con-
tacts with No Mutual Social Contacts: If the re-
cent updates of some social contacts are missing,
then this shows that they do not have any online
mutual social contacts with P , and P must obtain
these objects from the DHT. Thus, to retrieve the
newsfeed, P needs to 1) derive the key for their
updates by ABDecryption of their reference em-
bedded in the parent/containing object; 2) per-
form DHT lookups for them; and 3) decrypt the
updates by their corresponding symmetric key.

By exchanging presence status and recent updates
between online social contacts, the presence table and
the cache are always up-to-date. Thus, for viewing the
newsfeed, peer P just retrieves recent updates from the
cache.

4.3 Identifying Mutual Contacts and Autho-
rized Users

Many of the benefits of social caching come from be-
ing able to identify mutual social contacts. Although re-
lationships between users are privacy sensitive, in prac-
tice many users are comfortable sharing this informa-
tion with at least their immediate social circle. For
further privacy protection it is possible to use a social
contact discovery protocol that reveals only mutual so-
cial contact relationships and nothing else [18].

Since cached content is stored unencrypted, it is also
important to verify that a contact satisfies the access
policy associated with the object. It should be possi-
ble to extend the private contact discovery protocol to
learn the attributes shared by P and Q and thus make
an authorization decision based on that.3 For simplic-
ity, however, in our current implementation we instead
include an explicit list of authorized users in each con-
tainer that can be used to mediate sharing.

We note that users who wish to conceal their social
relationships, or reveal only a selected subset, may do
so, trading o↵ privacy for the e�ciency of social caching.

3Briefly, instead of a contact certificate as in [18] one would
use a (contact,attribute) certificate for each attribute.

Algorithm 1: User P joins the network
1
2 //User P j o i n s the network
3 generatePresenceTable (t ab l e) ;
4 soc ia lCach ingAlg (tab le , cache) ;
5 f o r (s o c i a l contact Q : t ab l e . keySet ()){
6 i f (! cache . conta in s (Q. update)){
7 getDHTKeyFor (Q. update) ;
8 encUpdate = dhtLookUp (Q, Q. updateObj) ;
9 update = dycrypt (encUpdate) ;

10 cache . put (Q, update) ;
11 }
12 }

Algorithm 2: Social caching algorithm
1
2 void soc ia lCach ingAlg (presenceTable tab le ,
3 Cache cache){
4 f o r (Soc ia lContact Q : t ab l e . keySet ()){
5 Q. v i s i t e d = TRUE;
6 dhtLookUp (Q, Q. presenceObj) ;
7 i f (Q. presence . s t a tu s){
8 sendTo (Q, Q. presenceObj) ;
9 receiveMessageFrom (Q, bufr) ;

10 i f (bufr . conta in s (presenceObj))
11 updateTable (tab le , bufr) ;
12 i f (bufr . conta in s (UpdateObj))
13 selectUpdatesToKeep (cache , bufr) ;
14 }
15 Soc ia lContact R = s e l e c t S o c i a lCon t a c t (& tab l e) ;
16 soc ia lCach ingAlg (R, t ab l e) ;
17 }

5. EVALUATION
In this section, we evaluate the performance of our

presence and social-caching algorithms.

5.1 Implementation and simulation setup
We built a simulator for Cachet based on the FreeP-

astry simulator [40], which implements the underlying
DHT. We simulate the cryptographic operations for
EASiER [27] with 1 attribute policy and 100 revoca-
tions run on a standard machine with 2.40GHz Intel
Core 2 Duo, 4GB memory, and running Ubuntu 10.04.
With this setting, the ABDecryption takes 422ms. The
symmetric key decryption (openssl aes-128-enc) takes
0.04ms on a file of size 2500 bytes, the average size of
a status update object. To simulate the social graph
in Cachet, we used the Facebook friendship graph from
the New Orleans regional network [43]. This data set
consists of 63,732 nodes, and 1.54 million edges.

We evaluated the performance of Cachet by averag-
ing results over the following unit experiment: we used
FreePastry to setup a DHT amongst all nodes in the
social network, except a particular random user P . We
then generate updates for the entire social circle of node
P , and simulate Cachet’s algorithms. Next we intro-
duce churn in the network, and consider di↵erent per-
centages of nodes amongst P ’s social contacts and FoFs
that remain online — 10%, 30% and 50%. We then

6

Ø! Cached content is stored unencrypted
Ø! An explicit list of authorized users is

included in each container that can be
used to mediate sharing.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300

Hi
t R

at
e

(%
)

Number of updates (friends)

50 percent
30 percent
10 percent

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Pr
es

en
ce

 h
it

ra
te

Number of DHT look ups

50% online contacts
30% online contacts
10% online contacts

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

Ti
m

e
(s

ec
)

Number of friends(updates)

0% online contacts
10% online contacts
30% online contacts
50% online contacts

Results
v!Social caching provides most of the

update objects for viewing the newsfeed

Ø! It depicts the average Newsfeed Hit Rate as a

function of number of updates and the fraction of
online social contacts.

v! Social caching decreases the latency for
retrieving the newsfeed

Ø! The simulation time includes the time for:
1)! ABDecrypting the references to both presence and

update objects that are not provided by social
contacts,

2)! Performing DHT lookups for retrieving objects,
3)! Decrypting the objects.

v! Most of the presence objects would be
available after a few DHT lookups and
decryptions

Ø! It plots the Average Progressive Hit Rate after d DHT

lookups and ABDecryptions for users with100 ! m ! 200
where m is oneÕs number of social contacts.

Future Work

References

Acknowledgments
I would like to thank to my supervisor Professor Apu Kapadia for the valuable

guidance and advice. I give special thanks to all the co-authors of the Cachet
paper [2, 3]: Professor Nikita Borisov, Prateek Mittal, Sonia Jahid.

